25,685 research outputs found

    Non-axisymmetric relativistic Bondi-Hoyle accretion onto a Schwarzschild black hole

    Get PDF
    We present the results of an exhaustive numerical study of fully relativistic non-axisymmetric Bondi-Hoyle accretion onto a moving Schwarzschild black hole. We have solved the equations of general relativistic hydrodynamics with a high-resolution shock-capturing numerical scheme based on a linearized Riemann solver. The numerical code was previously used to study axisymmetric flow configurations past a Schwarzschild hole. We have analyzed and discussed the flow morphology for a sample of asymptotically high Mach number models. The results of this work reveal that initially asymptotic uniform flows always accrete onto the hole in a stationary way which closely resembles the previous axisymmetric patterns. This is in contrast with some Newtonian numerical studies where violent flip-flop instabilities were found. As discussed in the text, the reason can be found in the initial conditions used in the relativistic regime, as they can not exactly duplicate the previous Newtonian setups where the instability appeared. The dependence of the final solution with the inner boundary condition as well as with the grid resolution has also been studied. Finally, we have computed the accretion rates of mass and linear and angular momentum.Comment: 21 pages, 13 figures, Latex, MNRAS (in press

    n-ary algebras: a review with applications

    Get PDF
    This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two entries Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the r\^ole of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity (GJI), and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity (FI). Three-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. Because of this, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the n-Lie algebra is relaxed, one is led the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose GJI reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the FI and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A_4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization.Comment: Invited topical review for JPA Math.Theor. v2: minor changes, references added. 120 pages, 318 reference

    Non-uniqueness of the supersymmetric extension of the O(3)O(3) σ\sigma-model

    Get PDF
    We study the supersymmetric extensions of the O(3)O(3) σ\sigma-model in 1+11+1 and 2+12+1 dimensions. We show that it is possible to construct non-equivalent supersymmetric versions of a given model sharing the same bosonic sector and free from higher-derivative terms.Comment: 19 page
    corecore